Fourth Annual Conference on Carbon Capture & Sequestration

Developing Potential Paths Forward Based on the Knowledge, Science and Experience to Date

Advanced Conversion/Capture Concepts

Carbon Sequestration in Waste Mineral Byproducts

Debbie Beach, John Gierke, and Jennifer Numrich
Department of Geological & Mining Engineering & Sciences
Michigan Technological University

May 2-5, 2005, Hilton Alexandria Mark Center, Alexandria Virginia

Research Objectives for this Preliminary Study

- Determine whether it is feasible to sequester CO₂ using calcium oxide minerals and cement kiln dust
- Measure the extent and rate of sequestration
- Examine the influence of water on the extent and rate of sequestration

Mineral Carbonation

 Alkaline metal oxides (MgO and CaO) react with CO₂ to produce calcite (CaCO₃) and magnesite (MgCO₃)

Carbonate is lowest energy-state of carbon; and carbonation reactions are highly exothermic:

CaO + CO₂
$$\rightarrow$$
 CaCO_{3(s)}

$$(\Delta H = -179 \text{ kJ/mol})$$
MgO + CO₂ \rightarrow MgCO_{3(s)}

$$(\Delta H = -118 \text{ kJ/mol})$$

Naturally occurring rock weathering process is very slow

Enhancing Mineral Carbonation

- Adding heat
- Increasing Pressure (P_{CO2})
- Extracting/concentrating oxides
- Increasing surface area

Alkaline Waste Byproducts

- Cement kiln dust, coal fly ash, etc.
- High surface area
- Little or no need for processing
- Typically high in calcium and/or magnesium oxides
- Generally available in large quantities
- Reaction with CO₂ neutralizes waste

Cement Manufacturing

- Third largest source of process-related CO₂ emissions
- U.S. cement industry alone produces > 90 Tg CO₂ annually (>800 Tg CO₂ globally)
- ~5% of the global CO₂ emissions
- CO₂ originates both from the calcining process and the burning of fossil fuels
- U.S. is 3rd largest cement producer
- Millions of tons of waste/byproducts produced annually

*Sources: Hanle et al 2004; EPA 2004, 1999; PCA 2003; van Oss and Padovani 2003

Cement Kiln Dust (CKD)

- 20 60% CaO
- High surface area (>800 m²/kg; PCA 2003)
- 8 to 12 million tons produced annually in U.S. alone (EPA 1999; PCA 2003; van Oss and Padovani 2003)
- A majority of CKD is disposed of or stockpiled on site, only a fraction is recycled into the process line

Carbonation Reactions using CKD

High surface area and open pore structure reduces need for processing, increases reaction rate, and decreases the overall energy requirements of the process.

Sequestration by CaO:

$$CO_{2(g)} \leftrightarrow CO_{2(aq)}$$

(K_H = 10^{-1.5} moles/L•atm)

$$CaO_{(s)} + H_2O \rightarrow Ca(OH)_{2(s)}$$
 $Ca(OH)_{2(s)} \leftrightarrow Ca(OH)_{2(aq)}$
 $Ca(OH)_{2(aq)} + CO_2 \rightarrow CaCO_{3(s)} + H_2O$

$$CaO_{(s)} + CO_{2(aq)} \rightarrow CaCO_{3(s)}$$

Significance of CO₂ Sequestration

- Landfilled CKD has the potential to capture 10% of the process-related emissions from the U.S. cement industry alone
- Carbonation process neutralizes wastes high in CaO and MgO; reducing leaching capacity
- End-products can be used for beneficial purposes such as road base, etc.

Preliminary Experiments

Batch Experiments

- CaO, Ca(OH)₂, and CKD
- Tedlar Bags
- Pure grade CO₂ and N₂ (matrix gas)
- Initial CO₂ concentrations ranging from 50,000 to 100,000 ppm_v
- Additional moisture added
- Duration: several hours to 1.4 days

Column Experiments

- CKD and Ca(OH)₂
- Core and glass columns
- Pure grade CO₂ and N₂ (matrix gas)
- Influent CO₂ concentration ranging from 50,000 to 100,000 ppm_v
- No moisture additional added
- Duration: 1 to 14 days.

Concentration of CO₂ with time during batch experiment with Cement Kiln Dust (CKD), before adding water

Concentration of CO₂ with time during batch experiment with Cement Kiln Dust (CKD), after adding water

Preliminary Batch Experiments

Initial Mass of CKD = 0.627 gInitial $CO_2 = 103,366 \text{ ppm}_v$

- Pseudo-first order reaction kinetics (at early times)
- Rate constant increased by an order of magnitude upon addition of water

Preliminary Column Experiments CKD Core Segment

COLUMN:

13.6 cm long
7.3 cm diameter
Influent CO₂ conc. = 50,000 ppm_v
Initial moisture content = 68%
Final moisture content = 55%
Gas pore volume = 139 ml
Gas pore velocity = 5.5 cm/min

Assume CaO % = 30.00

Total mass CO2 seq = 28.48 g

Mass CaO consumed = 36.24 g

% CaO Conversion = 28.49

no humidity added

(accounts for CO2 removed in N2 flush)

Change in mass of column = 28.86 g (mass balance > 98%)

Duration of Experiment: 13 days

Unreacted CKD, 500x

Pure grade CaCO₃, 100x

ESEM

Reacted CKD from column experiment; Sample taken from inlet, center CO₂ and H₂O vapor environment, 500x

Conclusions

- CaO, Ca(OH)₂, and CKD readily and rapidly sequester CO₂ under moist conditions
- The extent of sequestration is less than the "theoretical" amount either because coatings are formed or the influent gas flows preferentially
- The nature of the reactants and the specific products of the sequestration reactions are uncertain
- Environmental scanning electron microscopy shows promise for investigating the reactions and processes affecting sequestration rates and extent

Important Research Questions

- Carbonation reaction mechanism(s)
 - What are the rate-limiting processes?
- Rate of reaction(s)
 - Does the reaction rate change with time?
 - Does mechanism change with time?
- Extent of sequestration
 - What role does water and oxide composition play in reactions?
- Pattern of precipitation (pore filling, film or coating on particles, micropore filling, etc.)
 - Is pore plugging significant?
 - Does precipitation hinder/change gas transport?
- CO₂ gas transport
 - How important is preferential flow (immobile zones)?
 - How important is gas dispersion and diffusion?

Acknowledgements

NSF IGERT/MTU SFI

MTU Dept. of Geological & Mining Engineering & Sciences Institute of Hazardous Materials Management (IHMM) Karl Peterson & Dr. Larry Sutter (TMRC/MTU) Drs. Komar Kawatra & Tim Eisele (CME/MTU)

